Extensions 1→N→G→Q→1 with N=C2 and Q=C22×D17

Direct product G=N×Q with N=C2 and Q=C22×D17
dρLabelID
C23×D17136C2^3xD17272,53


Non-split extensions G=N.Q with N=C2 and Q=C22×D17
extensionφ:Q→Aut NdρLabelID
C2.1(C22×D17) = C2×C4×D17central extension (φ=1)136C2.1(C2^2xD17)272,37
C2.2(C22×D17) = C22×Dic17central extension (φ=1)272C2.2(C2^2xD17)272,44
C2.3(C22×D17) = C2×Dic34central stem extension (φ=1)272C2.3(C2^2xD17)272,36
C2.4(C22×D17) = C2×D68central stem extension (φ=1)136C2.4(C2^2xD17)272,38
C2.5(C22×D17) = D685C2central stem extension (φ=1)1362C2.5(C2^2xD17)272,39
C2.6(C22×D17) = D4×D17central stem extension (φ=1)684+C2.6(C2^2xD17)272,40
C2.7(C22×D17) = D42D17central stem extension (φ=1)1364-C2.7(C2^2xD17)272,41
C2.8(C22×D17) = Q8×D17central stem extension (φ=1)1364-C2.8(C2^2xD17)272,42
C2.9(C22×D17) = D68⋊C2central stem extension (φ=1)1364+C2.9(C2^2xD17)272,43
C2.10(C22×D17) = C2×C17⋊D4central stem extension (φ=1)136C2.10(C2^2xD17)272,45

׿
×
𝔽